
2013 Proceedings of the Information Systems Educators Conference ISSN: 2167-1435
San Antonio, Texas, USA v30 n2537

©2013 EDSIG (Education Special Interest Group of the AITP) Page 1
www.aitp-edsig.org

Teaching Programming Style with Ugly Code

Kirby McMaster
kmcmaster@weber.edu

Computer Science, Lake Forest College
Lake Forest, IL 60045, USA

Samuel Sambasivam

ssambasivam@apu.edu
Computer Science, Azusa Pacific University

Azusa, CA 91702, USA

Stuart Wolthuis

stuart.wolthuis@byuh.edu
Computer & Information Sciences, BYU-Hawaii

Laie, HI 96762, USA

Abstract

In this paper, we describe how good programming style can contribute to better software. Good style
makes source code easier to read and understand, which can reduce errors and simplify maintenance.
We discuss several popular style practices. We then introduce a software product we have written
called UglyCode, which allows instructors to demonstrate various programming style options. Specific
examples that illustrate the use of UglyCode follow. With UglyCode, programming style can be

visualized interactively, showing the immediate effect of style choices on the readability of code.

Keywords: programming style, layout, ugly code, algorithm, Java.

1. INTRODUCTION

Teaching computing students how to become
professional programmers involves substantially
more than helping them learn the syntax of a
programming language. In a beginning

programming class, the focus is on teaching a
computer how to solve a problem (Shustek,
2009). This involves a description of a higher-
level programming language (e.g. C++, Java,
Visual Basic, or Python), and practice organizing
the language statements into a working

program. At this initial stage, students write
code that the computer can understand.

As students gain programming experience, they
become more concerned with the design and
implementation of algorithms (Dijkstra, 1971).
Three desirable characteristics of algorithms
receive early emphasis: (1) correctness, (2)
performance, and (3) efficiency. We describe

these characteristics in the context of the
courses that spend substantial class time on
them: Data Structures, Algorithms, and
Software Engineering. We also discuss the
concepts of modularity and maintainability,
which have become increasingly important in

software development as systems have grown in
size and complexity.

2013 Proceedings of the Information Systems Educators Conference ISSN: 2167-1435
San Antonio, Texas, USA v30 n2537

©2013 EDSIG (Education Special Interest Group of the AITP) Page 2
www.aitp-edsig.org

Eventually, to become a professional
programmer, a student must be able to develop
systems that satisfy additional objectives, such
as dependability, reliability, safety, security,

usability, and portability.

Correctness
Programmers continually strive to write
programs that contain no errors. There are
several aspects to program correctness. The
aspect that receives the most attention from

mathematically-trained computing professionals
is logical correctness. The primary method used
to determine logical correctness is proofs. A
software development group in Australia (Klein,

2009; Klein, et al, 2009) recently announced
that they have proven their microkernel

operating system code to be correct. (It took
several years to complete the proof.) Textbooks
on algorithms demonstrate proofs for many
common algorithms (Cormen, et al, 2009;
Sedgwick & Wayne, 2011).

When you prove that an algorithm is correct, the

proof does not guarantee that the source code
will be without errors. Proofs also do not ensure
that the program meets customer requirements,
since requirements are often unstated,
inaccurate, or changeable.

A proof is based on a mathematical model,

which is an abstraction of a real world situation.
If the model does not accurately represent the
real world, then the proof is irrelevant. In
addition, the mathematical model never
completely matches the version of the model
presented to the computer. For example, the

math model may assume that variables are
continuous, whereas all numerical values in a
computer are discrete.

An alternative approach to verifying program
correctness is based on empirical results. This
approach depends on thorough testing of the

software as it executes. A well-designed test
plan consists of a broad range of tests, both for
individual parts of the system and for the

system as a whole (Somerville, 2011). In the
Software Engineering course sequence, students
should be required to construct test plans for
their software development projects before the

source code is written.

Performance vs. Efficiency
Programmers are encouraged to write programs
that perform well and make efficient use of
computer resources, especially the CPU and

memory (Silberschatz, et. al., 2012). There is a
fundamental trade-off between performance and
efficiency. A process can be given dedicated
CPU time and "unlimited" memory to improve

performance, but at the expense of efficiency.

In a system where multiple programs run
concurrently, primary responsibility for
managing these tradeoffs is handled by the
operating system. CPU scheduling algorithms
interleave CPU time with I/O activities. Virtual

memory management schemes allow for
dynamic reassignment of memory for processes
during execution. The goal is to balance
throughput and response time measures for

performance.

A programmer can influence performance and
efficiency through the choice of algorithms. For
example, the speed of a sorting algorithm can
depend on the type of data being sorted, along
with the amount of memory available. Merge
sorts are faster when additional memory can be
allocated to hold intermediate results (Lafore,

2003).

Often, performance is affected most by a
bottleneck in the system. If the slowest part
involves disk storage, then memory caching for
disk reads can greatly improve performance.
Sometimes a small section of code can slow

down the system, if performed repeatedly.
Rewriting the code in a faster language (e.g. C
or assembly language), using multiple threads,
or finding a better algorithm can improve
performance.

Modularity and Maintainability
Programmers are introduced to modular code in
their first programming class (Lewis & Loftus,
2011; Liang, 2012). The modules, in this case,
are functions and procedures. Not all of the
benefits of modularity are grasped initially. In
object-oriented programming, the design and

use of classes, objects, and encapsulation
becomes a valued way to manage complexity in
larger programs.

Maintainability is a less understood characteristic
of software. It depends on a variety of methods
that make code easier to correct and modify.

Most software is not maintained by the original
developer. Developers move on, but code will
often last for years. Readability is essential for
continual maintenance. The Department of
Defense estimates that 60-80% of software life
cycle costs are for maintenance.

2013 Proceedings of the Information Systems Educators Conference ISSN: 2167-1435
San Antonio, Texas, USA v30 n2537

©2013 EDSIG (Education Special Interest Group of the AITP) Page 3
www.aitp-edsig.org

Modular code is easier to maintain, but other
practices can also improve maintenance efforts.
Programming courses spend little time directly

on maintainability. More detailed presentations
appear in Software Engineering books
(McConnell, 2004; Somerville, 2011). Topics
relevant to maintenance include agile
development, configuration management,
version control, and refactoring.

What About Programming Style?
Programming style involves ways that a
programmer can organize and present code to
make it more understandable to other

programmers.

"The smaller part of the job of programming is
writing a program so that the computer can read
it; the larger part is writing it so that other
humans can read it." (McConnell, 2004).

This includes a variety of code layout,
formatting, and content enhancing techniques,

such as the use of white space and variable
naming conventions.

By making code more understandable, style
improvements contribute to other desirable
program features. For example, readable code
is more likely to be correct when initially written,

and it is easier to modify when changes are
required. Programming style can also improve
software testing to verify program correctness.

The remainder of this paper covers programming
style concepts, our UglyCode software, and style

examples in sample code. Section 2 describes
style concepts that involve source code layout
(e.g. curly braces), along with the insertion of
additional content into the code (e.g. meaningful
comments). In Section 3, we introduce our
UglyCode software environment, which can be
used by instructors to show the effect of

different style choices on code readability.
Section 4 presents several programming style
examples that can be demonstrated in class

using UglyCode.

2. PROGRAMMING STYLE

The primary purpose of programming style is to
make it easier for programmers to understand
what the code is doing. According to McConnell
(2004), the Fundamental Theorem of Formatting
should be: "Good visual layout shows the logical
structure of a program."

But which programming style is best? Expert
programmers almost always have their own
preferred style for writing code. A conversation

about which style is best often takes a religious
tone. One point of consensus is that "the details
of a specific method of structuring a program
are much less important than the fact that the
program is structured consistently" (McConnell,
2004).

In The Elements of Programming Style,
Kernighan and Plauger (1978) describe many
style choices for programmers. We present a
partial list of their style topics. Our discussion of

programming style is organized into two groups,
layout and content.

Program Layout
Program layout involves techniques to rearrange
source code to make it more readable. No
content is added to the code, other than
changes in spacing. Several layout methods are
described in the following paragraphs.

Blank lines: In a written report, blank lines are
added between paragraphs and sections to make
the report easier to read. Similarly, blank lines
can be added to source code between functions
and to bind together lines of code that perform
some computing activity (e.g. input). The effect

for the code is the same as for the report. It
makes the code easier to understand. However,
too few blank lines, too many blank lines, or
blank lines in improper places can disguise the
logical structure of a program.

Indenting: Another way to visually present lines
of code that "belong together" is to use the
same level of indentation for the lines. For
example, the code within a loop can be indented
a fixed amount. Because source code can have
nested blocks of statements, more than one
level of indentation can be helpful. Indenting is

also used to indicate that a statement wraps
over more than one line.

One question that always generates a mixture of
responses is "how many spaces to indent?" If
tabs are used to indent, then the question is
"what tab setting?" Each programmer will have a

preferred answer, and many software
development environments provide explicit
standards.

White space: Blank lines and indenting (with
spaces or tabs) use white space. In this

2013 Proceedings of the Information Systems Educators Conference ISSN: 2167-1435
San Antonio, Texas, USA v30 n2537

©2013 EDSIG (Education Special Interest Group of the AITP) Page 4
www.aitp-edsig.org

paragraph we refer to the use of blank
characters to provide spacing within a statement
to improve readability. For example, white
spaces can be used to separate the variables in

the parameter list of a function. Programmers
often exercise unstated habits in their use of
white space within statements.

Block layout: A block of code is a sequence of
statements having the behavior that either all
statements are executed, or none are. In a

conditional (e.g. if) statement, the block is
executed only when the condition is true. In
iterative (e.g. while) statements, the block will
be executed repeatedly until the continuation

condition becomes false. An important part of
block layout is placing marks in the code where

each block begins and ends.

Formatting conventions for blocks depend on the
programming language. In a language with
fully-bracketed syntax (e.g. Visual Basic, with If
... End If), the statements include markers for
the start and end of blocks. Recent languages

such as C, C++, and Java use curly braces (e.g.
"{ ... }") to mark blocks (Kernighan & Ritchie,
1988). There are differences of opinion on how
to format curly braces, such as whether or not to
put each curly brace on its own line.

Statement length: In assembly language

programming, instructions are short, so each
instruction easily fits on a single line. Early
fixed-format higher level languages such as
FORTRAN and COBOL were designed with
punched cards in mind (maximum of 80
characters per card). In these languages, a

statement will continue across more than one
card (line) only if marked in a special way.

Many recent languages are free-format, in that a
statement can continue across multiple lines
until a termination character occurs (e.g. ";" for
Java). The programmer has a choice of how

wide to format each line of code, using multiple
lines as needed for individual statements. Also,
several short statements can be placed on the

same line. The selected width may be guided by
screen display size and/or printer width.
However, very long lines can be as unreadable
as other "ugly" styles.

Providing Content
A programmer can also improve the readability
of code by adding information beyond the simple
rearrangement of text. Common ways to
provide this information are a thoughtful choice

of names for constants and variables, and the
insertion of useful comments at appropriate
locations in the code.

Magic numbers: A magic number is a literal
constant (e.g. 7.5) in source code without a
name. Unless the meaning of the constant is
documented, a maintenance programmer will
have a difficult time modifying the code
whenever the value of the constant must be
changed. One suggested programming style is

that all constants should have a meaningful
name, unless the value is 0 or 1.

Variable names: Unlike constants, the value of a

variable changes during the execution of a
program. To provide a way to store and refer to

the current value, a variable must be given a
name. Ideally, the name will describe what
attribute is represented by the variable. Very
short names and heavily abbreviated names can
be cryptic to the reader.

In many programming languages, the variable

name must be declared, a data type specified,
and (recommended) an initial value assigned
before the variable is used in computations.

Comments: Comments can be placed in source
code for most programming languages. Usually,
some special marking is required (e.g. "//") to

indicate that the comment is not to be executed.
Style guidelines from McConnell (2004) state
that comments should be included only if they
(1) describe the code's intent, (2) provide
information not in the code, or (3) summarize a
section of code. Java allows several types of

comments: full-line comments, end-line
comments, and multiple-line comments.

Why Teach Programming Style?
In The Practice of Programming, Kernighan and
Pike (1999) discuss why we should "bother" with
programming style.

"Why worry about style? Who cares what a
program looks like if it works? Doesn't it take too

much time to make it look pretty? Aren't the
rules arbitrary anyway?"

Some of Kernighan and Pike's answers to the

above questions include:
(1) "Sloppy code is bad code." Well-written code
has fewer errors, and will often be smaller.
(2) "Good style should be a matter of habit." A
programmer's work relies on habits developed

2013 Proceedings of the Information Systems Educators Conference ISSN: 2167-1435
San Antonio, Texas, USA v30 n2537

©2013 EDSIG (Education Special Interest Group of the AITP) Page 5
www.aitp-edsig.org

over time. With good habits, it takes much less
time to write working programs.

As we pointed out in the Introduction section,

customers want programs that are correct,
perform well, make efficient use of resources,
and are maintainable. Good programming style
makes source code more readable and
understandable, which helps programmers
provide the above features in the software they
create. We teach programming style because it

helps students develop the ability to write
professional quality code.

3. UGLYCODE SOFTWARE

To assist instructors in teaching programming

style, we have written a Java program called
UglyCode. The UglyCode software presents
programming style concepts in "reverse". The
usual "forward" approach presented in textbooks
shows examples of bad code, and then applies
good style principles to improve the code. Many
"PrettyPrint" programs are available to

demonstrate the forward approach.

For UglyCode, the input is a short Java program
that has been written to illustrate good
programming style. Using UglyCode, choices
can be made on how to "degrade" the style of
the code. Students can see how much harder it

is to understand source code when good style
features are omitted (e.g. indenting).

Used together, instructors can demonstrate
programming style concepts with a blend of
"forward" (textbook/PrettyPrint) and "reverse"

(UglyCode) examples.

UglyCode Program Features
Our explanation of how to use the UglyCode
software is in terms of the controls that appear
on the main screen (see Appendix B). The
controls include a File menu choice, six sets of

checkboxes to select style features to change,
and two buttons to activate code changes.

File menu
This is the only main menu choice on the
UglyCode screen. It includes the following
submenu options.

1. Open: Open an existing source code file,
using a "file-chooser" input control. UglyCode is
designed for Java programs, but most features
also apply to similar programming languages
such as C and C++.

2. Save As: As style selections (as described
below) are made and implemented, the resulting
"ugly" versions of the original program can be

saved as text files. To avoid overwriting the
input file, the name for each saved file should
differ from the input file name.

3. Exit: This option ends the UglyCode program.

Checkboxes

Checkboxes are grouped by style category.
Within each group, the checkboxes act like
command buttons, in that at most one box can
be checked. The following checkbox groups are

listed on the right-hand side of the UglyCode
main screen.

1. Line Spacing: Choices in this group show
how the inclusion or exclusion of blank lines in
code can affect readability. We include three line
spacing options.

Remove Blank Lines: Selecting this checkbox

causes all blank lines to be removed from the
code. This choice is equivalent to single-
spacing, which is a common format for business
reports.

Double Space Code: Double-spacing rarely
appears in production code, although a few

developers embrace it. This style choice is
included here to contrast with single-spacing.
Students are often asked to use double-spacing
when writing term papers for non-computer
courses. The extra blank lines in source code are
not intended for grading, but can be used for

inserting notes during code reviews.

Random Blank Lines: Blank lines can make it
easier to see which parts of the code belong
together. Unfortunately, blank lines do not
improve program readability if the lines are
inserted at inappropriate places. This style

option randomly inserts blank lines into the
code. After each non-blank line, the probability
is 1/3 that the next line will be blank,

independent of actions on previous lines. The
resulting code almost always makes the program
logic less clear.

2. Indenting: We provide three options for the
number of spaces that occur on the left side of
each line of code.

Remove Indents: With this option, all spaces on
the left side of each line are trimmed off. All

2013 Proceedings of the Information Systems Educators Conference ISSN: 2167-1435
San Antonio, Texas, USA v30 n2537

©2013 EDSIG (Education Special Interest Group of the AITP) Page 6
www.aitp-edsig.org

code starts at the left margin. This makes it
difficult to identify where branching and looping
control structures start and end.

Add Fixed Size Indents: The "best" size for
indenting can be a doctrinal preference among
programmers. With this option, the instructor
can demonstrate the readability of code with
various indenting choices--such as 2 vs. 3 vs. 4
spaces. Zero spaces is equivalent to removing
all indents. A pop-up window allows the user to

enter the desired number of spaces per indent.
Note that more than one indent can appear on a
line, such as in nested loops.

Add Random Indents: In this selection, each line
receives a random indent size of 0 to 16 spaces.

This is clearly not a practical way to indent, but
a similar result can occur in practice (and in
student assignments).

Suppose that code is written using an editor with
a fixed-indent size (say 4), but the programmer
mixes spaces with tabs. If the code is later

brought into a different editor (e.g. Notepad with
tab size 8), the mixture of new tab sizes and old
spaces can yield a ragged left margin for the
code. Debugging ragged-edge code can be a
very frustrating experience.

3. Curly Braces: Where to put the curly braces

to designate the start and end of blocks is a
layout decision guided by language traditions, as
well as by programmer preferences. C, C++,
and Java have separate histories, with different
preferred block marking rules. This option
allows the instructor to compare the traditional

C-style braces with Java-style braces, and allows
students to form their own preferences.

Change to Java Style: With this choice, curly
braces that define blocks for loops (while, for)
and branches (if-else) are formatted to have the
opening brace on the same line as the decision

expression. Curly braces in other parts of the
code are not changed.

Change to C Style: With this choice, curly braces
are formatted to have each opening brace on its
own separate line. Closing braces in the code
are not changed.

4. Comments: Comments can improve a
programmer's understanding of the intent of the
code, but only if the comments are "helpful".
Options are given to show the negative effects of
(1) having no comments, and (2) having

"useless" comments. UglyCode only acts on
single-line comments that start with "//". Other
comment delimiters (e.g. /* and */) are ignored.

Remove Comments: With this option, all
comments starting with "//" are removed from
the source code. For full-line comments, the
entire line is removed. For an end-line
comment, only the comment is removed. The
source code before the comment remains.

Change to Useless Comments: This option
replaces all full-line and end-line comments with
"useless" comments. The number of possible
useless comments is endless. For full-line

comments, UglyCode chooses randomly from a
list of 29 computer-humor statements found on

the web. For example, one of our favorite full-
line comments is: "True Klingon programmers
never put comments in their code."

The space for end-line comments is usually
shorter, so UglyCode chooses randomly from a
list of 11 popular desserts (to tempt a hungry

programmer). For example, one end-line
dessert is: "Strawberry Shortcake". In either
case, the comments are not relevant to the
code. Each repeated choice of this option will
give a new sample of useless comments.

5. Variable Names: Many variable naming

styles are prevalent. Some are language
specific (e.g. the preference for lower case
names in C). Most naming conventions
recommend the use of "meaningful names",
subject to possible name length restrictions.
For example, "countyTax" is self-descriptive,

while “CT” could be misconstrued as an eastern
US state or a medical diagnostic procedure.

The variable naming options in UglyCode show
how a departure from typical naming rules can
affect program understanding.

Change Case: This is a simple option to
demonstrate how case differences relate to
readability. For all variables with common type

declarations (int, byte, char, long, float, double,
boolean, and String) appearing at the start of a
line, the case of each letter in the variable name
is changed from lower-case to upper-case, or

from upper-case to lower-case. For example, a
lower-case name such as "job_cost" will be
changed to "JOB_COST". A camel-case name
such as "netIncome" will become "NETiNCOME".
This option allows students to see how annoying
minor name changes can be to a programmer.

2013 Proceedings of the Information Systems Educators Conference ISSN: 2167-1435
San Antonio, Texas, USA v30 n2537

©2013 EDSIG (Education Special Interest Group of the AITP) Page 7
www.aitp-edsig.org

Use Meaningless Names: Whether a variable
name is considered "meaningless" depends on
the context. There are many ways to create

meaningless names. We chose a well-known
encryption algorithm, a Caesar cipher, because it
is easy to program and scrambles text. Each
letter in a name is considered case-sensitive,
and is changed to the letter three positions later
in the alphabet (with wrap-around). Non-letters
are unchanged. For example, the variable

"bestBUY" would become "ehvwEXB", which
looks pretty meaningless.

6. Line Breaks: For free-format languages (e.g.

Java), the programmer can choose how much of
each statement to place on a line. For short

statements, more than one statement can
appear on a single line. For long statements,
the placement of a line break can affect the
readability of the code.

Set Line Length: This option shows what the
code will look like if a line length is specified. A

pop-up window allows the user to enter a
desired minimum line length (e.g. 40). The
code is then reformatted so that when
concatenated statements exceed this length,
they are split over additional lines.

A line break is placed in the first "safe" position

at or beyond the minimum length. "Safe" is
defined to be immediately after the first
semicolon (";"), left brace ("{"), right brace
("}"), or plus-sign ("+ ") at or beyond the
minimum length. These break points are not
certain to be safe, since they could split

statements in "bad" places.

Remove Line Breaks: This is the ultimate
reformatting of the source code. All line breaks
are removed and replaced with spaces. The
program now consists of a single long line. The
UglyCode window shows this line without word-

wrap, so the window's bottom slider control
must be used to view the entire program. The
revised one-line program can be saved, and then

viewed in an editor that provides word-wrap
(e.g. Notepad).

Note: After making programming style changes,

the resulting program can be saved as a text
file. If you are fortunate, the revised program
will compile and run. Before trying to compile,
make sure that the class name in the saved Java
program matches the output file name.

For example, if Remove Blank Lines, Remove
Indents, Remove Comments, Change Case (for
Variable Names), and Remove Line Breaks are
all checked, the reformatted program (which

consists of a single long line) should execute
exactly as before the changes. The source code
is much less readable, but the computer doesn't
mind.

Be aware that Set Line Length and Remove Line
Breaks, together with code that includes

comments, causes compiling problems when
comments are split over two lines or appear
between two statements within a line.

Command Buttons
The two buttons on the lower right-hand side of

the screen are used to invoke actions on the
source code: to make style changes, or to
restore the initial code.

Ugly It!: After several style options have been
selected using the checkboxes, this button
should be clicked to activate the changes on the

original source code. The restyled "ugly" code
will then appear in the main screen window.

Reset Text: Clicking this button will restore the
code in the window to its original form.

Code style changes are not cumulative. Each

set of selected changes is applied to the original
source code. If an instructor wants to
demonstrate the cumulative effects of style
changes, she/he should plan a sequence of
changes, and then mark cumulative sets of
checkboxes for the Ugly It! button clicks.

4. UGLYCODE TEACHING EXAMPLES

Several examples of how style concepts can
hinder the clarity of a program are described
below. Each example uses sections of the
sample Java code listed in Appendix A. This

Java program counts the number of prime
integers less than or equal to N and compares
this count with N/ln(N), which is the asymptotic

value stated in the Prime Number Theorem
(Newman, 1980). We display just enough
UglyCode input and output to demonstrate the
effect of the indicated programming style

choices.

Blank Lines and Comments
The first source code example demonstrates the
combined effect of removing all blank lines and
comments. The code section to be transformed

2013 Proceedings of the Information Systems Educators Conference ISSN: 2167-1435
San Antonio, Texas, USA v30 n2537

©2013 EDSIG (Education Special Interest Group of the AITP) Page 8
www.aitp-edsig.org

is presented below. This code includes two full-
line comments, two end-line comments, and one
blank line.

public static boolean isPrime(long X)

{

 // Determine if X is a prime

 if(X < 2) return false;

 if(X == 2) return true;

 if(X % 2 == 0) return false;

 // Check odd integers above 2

 for(long k = 3; k*k <= X; k+=2){

 if(X % k == 0) {

 return false;

 }

 } // end for

 return true;

} // end isPrime

Figure 1A: Initial Code.

The code with the comments and blank lines

removed is listed next. Fifteen lines have been
reduced to twelve lines.

public static boolean isPrime(long X)

{

 if(X < 2) return false;

 if(X == 2) return true;

 if(X % 2 == 0) return false;

 for(long k = 3; k*k <= X; k+=2){

 if(X % k == 0) {

 return false;

 }

 }

 return true;

}

Figure 1B: Ugly Code With Blank Lines
and Comments Removed.

The function name is descriptive and suggests
the purpose of the function. The code for the
function is still readable, but more mental effort

is required to understand the algorithm.

Indenting and Curly Braces

The next code example shows how readability
suffers when all indenting is removed, and C-
style curly braces are used. The code section to

be transformed is displayed below. These seven
lines of code include two levels of indenting, one
for the block of statements within the for loop,
and another for the computation inside the if-
statement.

// Count actual number of primes

numPrimes = 0;

for(long k = 2; k <= N; k++) {

 if(isPrime(k)) {

 numPrimes++;

 }

} // end for

Figure 2A: Initial Code.

The code without indenting but with C-style
braces becomes the nine lines listed below.
Again, the code is readable, especially with the

comments. However, the boundaries of the
nested blocks for the if-statement and the for-

statement are more difficult to distinguish.

// Count actual number of primes

numPrimes = 0;

for(long k = 2; k <= N; k++)

{

if(isPrime(k))

{

numPrimes++;

}

} // end for

Figure 2B: Ugly Code With C-style Braces
Without Indenting.

C-style curly braces alone will generate more

lines of code, since each opening brace is on a

separate line. C-style braces with no indenting
places all opening and closing braces (often
interspersed) along the left margin of the code.
This can result in a zigzag pattern of braces.

Useless Comments
The third code sample includes a full-line
comment and an end-line comment. The full-
line comment describes an input action
performed by a section of code. The end-line
comment makes it easy to determine where a
method (in this case, main) ends.

public static void main(String args[])

{

 long N, numPrimes;

 double estPrimes, PNTratio;

 // Get maximum N from command line

 N = 1;

 if(args.length >= 1) {

 N = Long.parseLong(args[0]);

 }

 . . .

} // end main

Figure 3A: Initial Code.

2013 Proceedings of the Information Systems Educators Conference ISSN: 2167-1435
San Antonio, Texas, USA v30 n2537

©2013 EDSIG (Education Special Interest Group of the AITP) Page 9
www.aitp-edsig.org

For comments to be effective, they must provide
information that is helpful to programmers who
later read the source code. Here, instead of

removing the comments, we replace them with
comments that are unrelated to program logic.

public static void main(String args[])

{

 long N, numPrimes;

 double estPrimes, PNTratio;

 // 640K ought to be enough for anybody.

 N = 1;

 if(args.length >= 1) {

 N = Long.parseLong(args[0]);

 }

 . . .

} // Chocolate Mousse

Figure 3B: Ugly Code With Useless
Comments.

The full-line comment is replaced with the
historically short-sighted quote "640K ought to
be enough for anybody", which has been

anecdotally attributed to Bill Gates. The
comment that marks the end of the main
method now recommends an enjoyable dessert,
"Chocolate Mousse".

Meaningless Variable Names

The final source code example demonstrates
how variable names can affect program
readability. In this example, two long integers
and two double floating point numbers are
declared. The declared names aren't perfect,
but they do suggest what the variables
represent, without being unnecessarily long.

long N, numPrimes;

double estPrimes, PNTratio;

. . .

// Calculate estimated number of primes

if(N < 2) {

 estPrimes = 0.0;

 PNTratio = 0.0;

} else {

 estPrimes = (double) N/Math.log(N);

 PNTratio = numPrimes / estPrimes;

}

Figure 4A: Initial Code.

Using the UglyCode program, we scramble the
names of variables that are declared at the start
of a statement. (We do not scramble the names

of variables declared within statements, such as
counter variables declared inside loops.)

UglyCode uses a simple variable renaming

algorithm that leads to meaningless names. The
algorithm is a Caesar cipher, with a forward shift
of 3, applied separately to lower-case and
upper-case letters. Since all variables are
declared before they are used, we are able to
change all variable names consistently with one
pass through the code.

The result of using the Caesar cipher on the
initial code sample is shown below.

long Q, qxpSulphv;

double hvwSulphv, SQWudwlr;

. . .

// Calculate estimated number of primes

if(Q < 2) {

 hvwSulphv = 0.0;

 SQWudwlr = 0.0;

} else {

 hvwSulphv = (double) Q/Math.log(Q);

 SQWudwlr = qxpSulphv / hvwSulphv;

}

Figure 4B: Ugly Code With Meaningless
Variable Names.

Variable name N is advanced to Q, and

numPrimes becomes qxpSulphv. Observe that

qxpSulphv has nothing to do with Sulphur.
Without the helpful comment, the variable
names do not reveal what the code is intended
to accomplish.

The above programming style examples

illustrate the utility of the UglyCode software for
interactive classroom and laboratory use. With
six style groups and 2-3 choices per group,
there are a total of 14 possible cases involving a
single style change. When several style changes
are combined into one example, or when the

cumulative effects of a sequence of changes are
examined, the number of cases increases
dramatically.

Of course, not all cases will be of equal interest
for a given sample Java program. A variety of
sample programs can be prepared to

demonstrate specific style concepts and
combinations.

5. SUMMARY AND CONCLUSIONS

In this paper, we described ways in which
programming style can affect how source code is

2013 Proceedings of the Information Systems Educators Conference ISSN: 2167-1435
San Antonio, Texas, USA v30 n2537

©2013 EDSIG (Education Special Interest Group of the AITP) Page 10
www.aitp-edsig.org

read and understood. We related programming
style to more noted program features, such as
correctness, performance, efficiency, modularity,
and maintainability.

We introduced a program we have written called
UglyCode, which allows an instructor to
demonstrate how style changes effect the
readability of code. Instead of showing an
example of "bad" code and then making it
"pretty", UglyCode works in the opposite

direction. UglyCode input should be a Java
program written in "good" style. Style changes
are then requested, and the resulting
degradation of the code can be viewed

immediately.

The UglyCode software allows students to see
the effects of individual style changes, as well as
groups of changes. A cumulative sequence of
style changes can be performed easily. Any
transformed source code can be saved in a text
file. Students can then attempt to compile and
run the modified code to determine whether or

not the changes effect how the program runs. It
is informative to see how often style changes are
ignored by the computer.

Future Research
We have tested early prototypes of the UglyCode
software in Programming and Software

Engineering courses. The data we have
collected from students is largely anecdotal.
With a completed version of UglyCode now
available, we plan to measure how well this tool
helps teach students the importance of good
programming style.

Note: An executable version of the UglyCode
program, along with the sample Java program,
can be obtained from the authors.

6. ACKNOWLEDGEMENTS

An initial version of the UglyCode software was
prepared by Samuel Grissom and David Fu, CS
students at Azusa Pacific University.

7. REFERENCES

Cormen, Thomas H., Leiserson, Charles E.,

Rivest, Ronald L., & Stein, Clifford (2009).
Introduction to Algorithms (3rd ed). MIT
Press.

Dijkstra, E. W. (1971). A short introduction to
the art of programming. E. W. Dijkstra
Archive. www.cs.utexas.edu/~EWD/

Kernighan, Brian W., & Pike, Rob (1999). The

Practice of Programming. Addison-Wesley.

Kernighan, Brian W., & Plauger, P.J. (1978). The
Elements of Programming Style (2nd ed).
McGraw-Hill.

Kernigan, Brian W., & Ritchie, Dennis M. (1988).
The C Programming Language (2nd ed).
Prentice Hall.

Klein, Gerwin (2009). Correct OS kernel? Proof?
Done! USENIX ;login:, 34(6):28-34, Dec

2009.

Klein, G., Elphinstone, K., Heiser, G., et. al
(2009). Formal verification of an OS kernel.
In 22nd SOSP, pages 207–220, Big Sky, MT,

USA. ACM.

Lafore, Robert (2003). Data Structures and
Algorithms in Java (2nd ed). Sams
Publishing.

Lewis, John, & Loftus, William (2011). Java
Software Solutions, Foundations of Program
Design (7th ed). Addison Wesley.

Liang, Y. Daniel (2012). Introduction to Java
Programming (9th ed). Prentice Hall.

McConnell, Steve. (2004). Code Complete (2nd
ed). Microsoft Press.

Newman, D. J. (1980). Simple analytic proof
of the prime number theorem. American
Mathematical Monthly 87.

Sedgewick, Robert, & Wayne, Kevin (2011).
Algorithms (4th ed). Addison-Wesley.

Shustek, Len (2009). Donald Knuth: a life's
work interrupted. Communications of the
ACM, Volume 51, No 8.

Silberschatz, Abraham, Galvin, Peter B., &

Gagne, Greg (2012). Operating System
Concepts (9th ed). Wiley.

Somerville, Ian (2011). Software Engineering
(9th ed). Addison-Wesley.

2013 Proceedings of the Information Systems Educators Conference ISSN: 2167-1435
San Antonio, Texas, USA v30 n2537

©2013 EDSIG (Education Special Interest Group of the AITP) Page 11
www.aitp-edsig.org

APPENDIX A: Sample Java Program

// Prime Number Theorem

// pi(N) ~ N/ln(N) for large N

public class TestPNT6

{

 public static void main(String args[])

 {

 long N, numPrimes;

 double estPrimes, PNTratio;

 // Get maximum N from command line

 N = 1;

 if(args.length >= 1) {

 N = Long.parseLong(args[0]);

 }

 // Count actual number of primes

 numPrimes = 0;

 for(long k = 2; k <= N; k++) {

 if(isPrime(k)) {

 numPrimes++;

 }

 } // end for

 // Calculate estimated number of primes

 if(N < 2) {

 estPrimes = 0.0;

 PNTratio = 0.0;

 } else {

 estPrimes = (double) N/Math.log(N);

 PNTratio = numPrimes / estPrimes;

 }

 // Output results

 System.out.println("\n Prime Number Theorem"

 + "\n max N.... = " + N

 + "\n primes... = " + numPrimes

 + "\n N/ln_N... = " + estPrimes

 + "\n ratio.... = " + PNTratio);

 return;

 } // end main

2013 Proceedings of the Information Systems Educators Conference ISSN: 2167-1435
San Antonio, Texas, USA v30 n2537

©2013 EDSIG (Education Special Interest Group of the AITP) Page 12
www.aitp-edsig.org

 public static boolean isPrime(long X)

 {

 // Determine if X is a prime

 if(X < 2) return false;

 if(X == 2) return true;

 if(X % 2 == 0) return false;

 // Check odd integers above 2

 for(long k = 3; k*k <= X; k+=2){

 if(X % k == 0) {

 return false;

 }

 } // end for

 return true;

 } // end isPrime

} // end class

APPENDIX B: UglyCode Software Main Screen

